Artboard 21Artboard 23Artboard 24Artboard 25Artboard 1 copyArtboard 1 copy 2Artboard 4Artboard 10Artboard 6Artboard 7Artboard 12Artboard 13Artboard 14Artboard 17Artboard 16Artboard 18

Your company is going through an asset management initiative and they need ‘reliability engineers’ to support this new focus.  One day your title begins with ‘Maintenance _____’ and the next day you come into the office and the title on your door now reads ‘Reliability _____’.  Undertaking new asset management initiatives as a newly titled “reliability engineer” can be daunting.

Reliability Engineering isn’t typically something one would go to school for or get a certificate in, so what does an R.E need to know?

Your “toolkit” as an R.E. should consists of various methods that you can employ with the goal of optimizing maintenance strategies to achieve operational success, including:

  • root cause analysis
  • reliability centered maintenance
  • failure modes and effects analysis
  • failure data analysis
  • reliability block diagrams
  • lifecycle cost calculation

To be successful at increasing the reliability of your plant, reliability practitioners should utilize these ‘tools’ that can deliver the best results, applying them based on the type of problem you’re facing.

Approaching Maintenance Strategy Optimization with Your Toolkit

It's essential for a newly appointed reliability professional to be aware of common maintenance issues. The more time maintenance personnel spend fighting fires, the more their morale, productivity, and budget erodes. The less effective routine work that is performed, the more equipment uptime and business profitability suffer.

Here’s the good news: An optimized maintenance strategy is simpler and easier to sustain than a non-optimized strategy, resulting in fewer issues and downtime. It's easy for organizations and new reliability engineers to be intimidated by the idea of maintenance strategy optimization. An important tip to remember is that small changes can make a huge difference. Maintenance optimization doesn’t have to be time-consuming or difficult, nor does it have to be a huge undertaking. By creating a framework for continuous improvement and understanding the methods to employ, you can ultimately drive towards higher reliability, availability and more efficient use of your production equipment.

Want to develop your skills as a new Reliability Engineer?

Gain a sound theoretical base for fundamental reliability terms and concepts in our Intro to Reliability training course.